Сахар и Глюкоза

Сахар является основным поставщиком глюкозы в организм человека, которая является эффективным источником энергии, необходимый для работы мышечной, кровеносной и других систем организма.

Сахар

Сахар и Глюкоза Сахар (по часовой стрелке сверху слева): белый рафинированный, нерафинированный, необработанный тростник, коричневый Сахар и Глюкоза Увеличенное изображение кристаллов сахарозы Сахар и Глюкоза Модель молекулы сахарозы Сахар и Глюкоза Немецкая сахарная скульптура, 1880 г. Сахар и Глюкоза Два тщательно продуманных сахарных триомфи богинь на обед, устроенный графом Каслмейном, британским послом в Риме, 1687 г. Сахар и Глюкоза Немецкие химики Андреас Сигизмунд Маргграф и Франц Карл Ашар (на фото) заложили основы современной сахарной промышленности

Са́хар — распространённый продовольственный товар. Основной компонент сахара — сахароза. Но кроме неё продукт может содержать различные примеси. В белом сахаре допускается их содержание до 0,25 %, в рафинированном — до 0,1 %.

Сахара́ — то же, что низкомолекулярные углеводы (моно- и олигосахариды). Некоторые из них имеют сладкий вкус.

История сахара

Этимология

Родина сахара — Индия (др.-инд. शर्करः (IAST: śarkaraḥ) «песчинка, гравий, сахар»), в русский язык это слово было заимствовано через греч. σάκχαρον (сакхарон).

Древние времена и Средневековье

В Европе сахар был известен ещё римлянам. Коричневые сахарные крупицы приготавливали из сока сахарного тростника и ввозили в Европу из Индии. Египет, провинция Римской империи, был посредником в торговле с Индией. Позднее сахарный тростник появился на Сицилии и в Южной Испании, но с падением Римской империи эта традиция была утрачена.

В Европе

Стебли сахарного тростника, растения, в диком виде росшего в Индии, являлись первоначальным сырьём для добывания сахара. В Европе тростниковый сахар стал известен ещё до нашей эры в качестве медицинского средства. При владычестве арабов в IX веке возделывание сахарного тростника было развито в Египте, Сицилии и Южной Испании. В конце X века выработка сахара в виде конических сахарных голов уже производилась в Венеции, но большее распространение сахар получил в Европе лишь во время крестовых походов.

В 1493 году Колумб перенёс сахарный тростник с Канарских островов на Санто-Доминго (Гаити), и с этого времени его культивирование в Вест-Индии и Центральной Америке стало быстро развиваться, и импорт сахара из колоний начал покрывать общую потребность в нём в Европе, в которой начиная с XVI столетия появились рафинадные сахарные заводы для его очистки.

Фламандский картограф Абрахам Ортелий писал в 1572 году: «Сахар одно время можно было достать только у аптекарей, которые его приберегали для больных; теперь им лакомятся повсеместно. То, что раньше было лекарством, стало обычной едой».

Тем не менее, сахар ещё долго, вплоть до XIX века, оставался предметом роскоши. Большая часть сахара, потребляемая в современном мире, производится из сахарного тростника.

В 1747 году Андреас Марграф опубликовал в мемуарах Берлинской академии наук свои наблюдения о возможности извлекать сахар из корнеплодов свекловицы (Beta alba) и указал даже порядок работы, который в существенных чертах сохранился и до настоящего времени. Честь устройства первого завода для добывания сахара из свекловицы принадлежит ученику Марграфа Ашару, но первые опыты в фабричном размере были неудачны и производство свекловичного сахара поставлено было на твёрдую почву в 1806 году Наполеоном (раздача земли для возделывания сахарной свёклы, учреждение при фабриках школ, выдача премий), который видел в нём одно из средств к поддержанию т. н. континентальной системы и независимости от импорта из Британской империи. Высокая цена колониального тростникового сахара (около 8 франков за килограмм) делала выгодным производство сахара местного, а вместе с тем введённые во Франции усовершенствования производства (тёрки, гидравлические прессы, процеживание через костный уголь, нагревание и сгущение сока паром) повели за собой быстрое его развитие: в 1828 году во Франции работали уже 103 завода, производившие до 5 тыс тонн сахара в год. Технология, разработанная во Франции, распространилась затем в Германии и других странах Европы.

В России

История сахара на территории современной России начинается примерно с XI—XII веков. Когда сахар завезли впервые, он был доступен только знати. Первая в России «сахарная палата» была открыта Петром I в начале XVIII века, и сырьё для сахара ввозилось из-за границы. В 1809 году стало налаживаться производство сахара из отечественного сырья — сахарной свёклы.

В 1799 году профессор фармацевтической химии и фармации Московского университета Иоганн Иаков Биндгейм разработал способ получения сахара из белой свёклы и предложил план строительства сахарных заводов, описав основные составляющие сахарного производства в своей статье «Опыты и наблюдения о домашнем приготовлении сахару в России, а особливо из свекловицы».

В 1799‒1801 годах Яков Степанович Есипов разработал технологию получения сахара из свёклы в промышленных условиях, впервые используя способ очистки свекловичного сока известью, применяемый и по настоящее время.

Первый завод в России для добывания свекловичного сока, главным образом для переработки в спирт, основан компаньонами генерал-майором Е. И. Бланкенагелем и Я. С. Есиповым в 1802 году в Тульской губернии, затем сахарный завод был устроен И. А. Мальцовым в 1809 году, дальнейшее развитие русского свеклосахарного производства многим обязано семье графов Бобринских. В 1897 году в России работали 236 заводов производительностью до 45 млн пудов в год.

Коричневый сахар

Сахар и Глюкоза Коричневый сахар

Коричневый сахар — это тростниковый нерафинированный сахар.

Коричневый сахар состоит из кристаллов сахарозы, покрытых тростниковой мелассой с естественным ароматом и цветом. Производится увариванием сахарного сиропа по специальной технологии. Существует большое количество разновидностей коричневого сахара, которые различаются между собой главным образом по количеству содержащейся патоки мелассы.

Тёмный тростниковый сахар имеет более тёмный цвет и более сильный аромат патоки, чем светлый. Иногда коричневый сахар называют «чайный» или «кофейный». Производителями и продавцами коричневый сахар позиционируется как элитный и дорогой, экологически чистый деликатесный продукт. Но диетологи отмечают, что неочищенный сахар может содержать нежелательные примеси и даже вредные примеси и имеет примерно такую же калорийность.

Визуально коричневым сахаром также является измельченный утфель (промежуточный продукт при производстве сахара), производимый из сахарной свёклы или тростника. Имеет сладкий вкус и сильно выраженный аромат патоки и мелассы.

На рынке также встречаются подделки коричневого сахара — его могут изготавливать из рафинированного, примешивая к нему коричневый краситель. В странах-производителях тростникового сахара производство таких подделок не имеет экономического смысла. В России и ряде других стран подделки производятся из-за относительной дороговизны тростникового сахара.

Виды сахара по сырью

Сахар тростниковый

Сахар и Глюкоза Рубленые стебли сахарного тростника

Сахарный тростник относится к многолетним травам, культивируется в тропических и субтропических регионах. Для его выращивания требуется тёплый климат с достаточным количеством осадков в период вегетации, чтобы в полной мере использовать потенциал роста растений. Урожай собирают механически или вручную, стебли нарезаются на куски и быстро транспортируются на перерабатывающий завод. Здесь сырьё либо измельчают и экстрагируют сок с водой, либо сахар извлекается путём диффузии. Сок потом подвергается очищению с помощью гашёной извести (дефекация) и подогрева для дезактивации ферментов. В результате жидкий сироп пропускается через серию испарителей, после чего оставшаяся вода удаляется в вакуумном аппарате. После этого из пересыщенного раствора выпадают кристаллы сахарозы.

Патока является побочным продуктом процесса производства сахара. Волокна от стеблей, известные как жмых, сжигаются с целью получения энергии для процесса экстракции сахара. Кристаллы утфеля (сахара-сырца) имеют липкий коричневый налёт и могут быть использованы в пищу в исходном виде, или же их отбеливают диоксидом серы или угольной кислотой (процесс сатурации) для получения белого продукта.

Сахар свекольный

Сахар и Глюкоза Корнеплоды сахарной свёклы

Сахарная свёкла (Beta vulgaris) относится к двулетним растениям, мясистый корнеплод формируется в первый год. Культивируется в регионах с умеренным климатом с умеренным количеством осадков и требует плодородной почвы. Урожай собирают осенью, с удалением ботвы и налипшей почвы. Корнеплоды могут храниться без потерь сахарозы в течение нескольких недель перед отправкой на перерабатывающий завод, где свёклу промывают, нарезают и отправляют в диффузионные аппараты для получения сахарного сиропа. Сок с диффузионных аппаратов проходит через мерники, потом его для отделения от частичек мякоти пропускают через фильтры из древесных стружек или грубой ткани, либо через металлические сита. После этого сок подогревается до +60 °С в решоферах, — в котлах, снабжённых трубками, через которые проходит сок, а в пространство между трубками пропускают пар; после этого сок поступает в дефекатор(ы) и несколько раз подвергается очистке известью (процесс дефекации) и затем углекислым газом (процесс сатурации).

Процессы дефекации и сатурации состоят в том, что известь при нагревании вытесняет слабые органические основания в осадок и даёт с двуосновными органическими кислотами нерастворимые соли кальция, разлагает инвертированный сахар, даёт нерастворимые соединения с легуминовыми белками и, наконец, избыток её увлекает в осадок имеющуюся в соке суспензию; при этом щелочные основания, освободившись из солей органических кислот, вступают в соединение с сахарозой, образуя щелочные сахараты, а избыток извести даёт одновременно известковый сахарат; вместе с тем азотистые вещества частично начинают разлагаться с выделением аммиака. Следующая затем обработка дефекованного сока угольным ангидридом имеет целью, главным образом, удалить избыток извести, которая, осаждаясь в виде карбоната кальция, производит дальнейшее осветление и обесцвечивание сока, а равно, разложить щелочные и известковые сахараты; сатурацию останавливают при известной щёлочности сока (часть щёлочности зависит от присутствия углекислых щелочных солей), чтобы этим предохранить сок от разложения под действием микроорганизмов. Кроме того, предложено весьма большое число средств и способов для очищения сока для замену извести и угольной кислоты, но все эти предложения не приобрели практического применения.

Очищенный указанными средствами сок настолько освобождается от примесей, что его можно простым выпариванием довести до такой концентрации, при которой из уваренной массы будут осаждаться кристаллы сахара.

Сгущённый сок, или сироп, называемый утфелем (Hutfüllmasse), при процеживании подвергается окончательному увариванию в вакуум-аппаратах. Отделение кристаллов от патоки производят при помощи центрифуг, пуская во вращающийся барабан центрифуги только что выпущенный утфель (горячее пробеливание), или давая ему охладиться (холодное пробеливание), причём он застывает в твёрдую массу, которую необходимо для придания ей однородности с целью равномерной нагрузки центрифуги размешать, что производится в приборах — утфелемешателях. Наполненный утфелем барабан центрифуги выбрасывает через сетчатые стенки патоку (первый оттёк) и удерживает кристаллы сахара, которые пробеливают или сперва клерсом, или напрямую паром, обмывающим удержавшуюся на кристаллах патоку; эту часть стекающей жидкости обыкновенно собирают отдельно (второй оттёк). По окончании пробелки кристаллы сахара, составляющего так называемый белый сахар, или первый продукт, вынимают из центрифуги и высушивают, пропуская через вращающиеся цилиндры, через которые проходит струя нагретого воздуха. При горячем пробеливании из 100 частей утфеля получается до 50 частей первого продукта, при холодном — до 53—55 частей, хотя уже несколько менее чистого. Белый сахар содержит 99,0—99,8 % сахара.

Полученные с первого продукта оттёки перерабатываются и отделяются от патоки. Таким образом получается второй продукт, или первый жёлтый сахар, содержащий 90-95 % сахара. Патока, отделённая от второго продукта, после переработки даёт третий продукт, с содержанием сахара от 85 % до 90 % (второй жёлтый сахар). Обыкновенно уже после выделения кристаллов третьего продукта получается патока, содержащая настолько много не сахара, что она называется чёрной, или кормовой, и идёт в большом количестве как материал для винокурения, а также в корм скоту.

Сахар кленовый

См. также: Кленовый сироп

Кленовый сахар — традиционный сахар в восточных провинциях Канады, добываемый с XVII столетия из сока сахарного клёна, для чего стволы в феврале и в марте просверливают, и тогда из отверстий начинает вытекать сок, содержащий до 3 % сахара. Течение сока продолжается несколько недель, так что из каждого дерева его получается большое количество. Сок выпаривают, получают «кленовый сироп», а затем из сиропа добывают сахар (до 3—6 фунтов ежегодно из каждого дерева). Он употребляется местным населением вместо обыкновенного тростникового сахара. Индустрия кленового сиропа в 1989 году принесла более 100 млн долларов прибыли.

Сахар пальмовый

Пальмовый сахар или ягре — добывается в Южной и Юго-Восточной Азии, на Молуккских островах и многих островах Индийского океана из сладкого сока, вытекающего в большом количестве из надрезов на молодых цветочных початках различных видов пальм. В Индии на Коромандельском берегу, на Мальдивских и Молуккских островах, а отчасти и на Шри-Ланке его получают, главным образом, из сока кокосовой пальмы (так называемый кокосовый сахар). Одна кокосовая пальма в состоянии дать в год более 250 кг сока, содержащего до 20 % сахарозы, и при умелом пользовании, не нанося деревьям значительный вред, можно получать хорошие выходы сока в течение многих лет. Сахар, получаемый из пальмового сока выпариванием, формуется в скорлупах кокосовых орехов и в виде круглых караваев поступает на рынок. Потребляют его преимущественно в той же местности, где и производят. Добывают пальмовый сахар также и из финиковой пальмы, аренги и других пальм.

Сахар сорговый

Добывание сахара из стеблей сорго сахарного (Sorghum saccharatum (L.) Pers.) практиковалось ещё с глубокой древности в Китае, позднее получило распространение в северных штатах США во время гражданской войны, когда подвоз тростникового сахара по морю блокировался Англией, но сорговый сахар не получил широкого распространения, так как сорго не оправдало возлагаемых ожиданий как удобный сырьевой материал для добычи сахара. Объясняется это тем, что хотя сорговый сок и весьма богат сахарозой, извлечение из него последней в чистом виде сопряжено со значительными трудностями ввиду большого содержания в соке минеральных солей, камедеобразных веществ и инвертированного сахара; вследствие этого выход чистого кристаллического сахара весьма мал. Для извлечения сахара из сорго применяют, между прочим, и диффузионный способ. Сорговая резка содержит 5-11 % обыкновенного и 1-9 % инвертированного сахара; состав одного утфеля, например, был следующим: сахарозы — 53,5 %, инвертированного сахара — 13,6 %, органических веществ (не сахара) — 5,1 %, золы — 4,7 % и воды — 23,1 %. Гораздо большую выгоду сорго приносит в винокурении. Однако культура сорго для получения сахара сохраняет свой сельскохозяйственный потенциал, поскольку сорго может возделываться в засушливых районах, где выращивание прочих сахарных культур либо невозможно, либо невыгодно. Также сахарное сорго не требует специальных машин и особых приёмов возделывания, для его культивирования пригодны те же методы и механизмы, которые используются для кукурузы.

Пищевая ценность сахара

Сахар относится к углеводам. Крахмал также принадлежит к углеводам, но усваивание его организмом происходит относительно медленно. Сахароза же быстро расщепляется в пищеварительном тракте на глюкозу и фруктозу, которые затем поступают в кровоток.

Глюкоза обеспечивает более половины энергетических затрат организма. Нормальная концентрация глюкозы в крови поддерживается на уровне 80—120 миллиграммов сахара в 100 миллилитрах (от 0,08 до 0,12 %). Глюкоза обладает способностью поддерживать барьерную функцию печени против токсических веществ благодаря участию в образовании в печени так называемых парных глюкуроновых кислот. Приём сахара внутрь или введение глюкозы в вену рекомендуется при некоторых заболеваниях печени, отравлениях.

1 чайная ложка = 4 г сахара = 16 ккал.

Производство сахара

Сахар и Глюкоза Прессованный сахар-рафинад Сахар и Глюкоза Пинцет для сахара-рафинада

Выпускаются следующие виды сахара:

  • сахар белый;
  • кусковой сахар (прессованный или отлитый в форме);
  • сахарная пудра;
  • сахар-кандис;
  • сироп — водный раствор сахара;
  • В прошлом выпускался в форме сахарной головы.

Статистика производства в мире

Среднее годовое потребление сахара на человека в Европе: середина XIX века — 2 кг, 1920 год — 17 кг, 2000-е — 37 кг.

В период с 2001 по 2018 год мировое потребление сахара увеличилось с 123,454 млн тонн до 172,441 млн тонн, что эквивалентно росту в среднем на 2,01% в год.

В 2015 году в мире было произведено 167,5 миллионов тонн сахара, при этом 88 % сахара было произведено из сахарного тростника и 12 % из сахарной свёклы. В пятёрку крупнейших производителей сахара в 2015 году вошли Бразилия, Индия, Европейский Союз, Таиланд и Китай. За тот же год крупнейшим экспортёром сахара являлась Бразилия, за ней следовали Таиланд и Индия. Крупнейшими импортёрами были Китай, Соединённые Штаты и Индонезия. В настоящее время Бразилия имеет самое высокое потребление сахара на душу населения, за ней идут Австралия, Таиланд и Европейский Союз.

В 2019 году объем торговли сахаром в мире снизился по сравнению с 2017 и 2018 годами, достигнув 57,74 млн тонн, что на 4,43 млн тонн меньше, чем в 2018 и на 7,80 млн тонн меньше, чем в 2017. Считается, что этот тренд отражает уверенность стран-импортеров в том, что существует переизбыток предложения по экспорту сахара.

Влияние на здоровье

Чрезмерное потребление подслащенных напитков (в том числе фруктовые соки, безалкогольные напитки, фруктовые напитки, спортивные напитки, энергетики, холодный чай и лимонад) повышает риск развития метаболического синдрома – который включает в себя ожирение и сахарный диабет 2 типа. Эти патологии могут возникать у взрослых и детей за счет увеличения общей калорийности пищи. Дети, которые чрезмерно употребляют сахар в еде и напитках, имеют высокий риск набрать лишний вес. Обзоры показывают, что для предотвращения распространенности ожирения среди детей и взрослых нужна государственная политика в направлении здорового образа жизни. Помимо чрезмерного увеличения калорийности, существуют и другие механизмы, с помощью которых высокое потребление сахара вызывает ожирение; эти механизмы до сих пор неясны из-за ограничений клинических исследований, связанных с неконтролируемыми факторами, такими как особая диета, физическая активность и малоподвижный образ жизни.

Долгое время потребление сахара и внутривенное введение концентрированных растворов глюкозы считалось эффективным средством при различных заболеваниях сердечно-сосудистой, нервной и пищеварительной систем.

В последние годы диетологи склоняются к необходимости ограничения употребления этого продукта. Предполагается, что в пожилом возрасте избыточное потребление сахара способствует нарушению жирового обмена, приводит к увеличению концентрации холестерина и глюкозы в крови, вносит дезорганизацию в функции клеток.

На повышение в крови холестерина влияет характер принимаемых с пищей иных сахаров: наиболее активна в этом отношении лактоза, по сравнению с сахарозой, которая в свою очередь больше способствует гиперхолестеринемии, чем глюкоза. Увеличение концентрации глюкозы в крови, изменяя проницаемость стенки артерий, создаёт благоприятные условия для отложения в ней липидов и повышает склеивание тромбоцитов.

Не случайно диетологи рекомендуют, чтобы в рационе питания пожилых людей, особенно имеющих склонность к тучности, количество сахара не превышало 15 % от общего суточного количества углеводов[источник не указан 661 день].

Кардиологи утверждают, что в результате повышения калорийности питания за счёт сахара у людей, не занимающихся физическим трудом, создаются условия для избыточной массы тела и быстрого развития атеросклероза[источник не указан 661 день].

Потребляемые в излишке легкоусвояемые, но неусвоенные углеводы попадают из кишечника в кровоток и раздражают (а если это повторяется часто, то могут нарушить) секрецию инсулина поджелудочной железой.

В нормальных условиях гормон поджелудочной железы — инсулин выполняет в организме функции регулятора углеводного обмена. Благодаря инсулину глюкоза преобразуется в печени и в мышцах в полисахарид гликоген, а часть глюкозы превращается в жир. Потребность организма в углеводах в среднем возрасте составляет 400—500 граммов в сутки, а в пожилом на 100 граммов меньше, то есть 300—400 граммов в сутки.

Следует учитывать, что углеводы — это не только сахар, они также содержатся в мёде, фруктах, мучных продуктах, крупах. Так называемые простые сахара (тростниковый, свекловичный, виноградный) легкорастворимы в воде и быстро всасываются в кровь. Для замедления перехода глюкозы из крови в ткани рекомендуется заменять рафинированные углеводы (сладости, кондитерские изделия и прочее) полисахаридами, например, крахмалом.

Исследователи из University of Bath выяснили, что люди, употребляющие чрезмерное количество сахара, имеют повышенный риск появления симптомов болезни Альцгеймера. Ученые установили четкую связь между уровнем сахара в крови и дегенеративным неврологическим заболеванием, так как переизбыток глюкозы нарушает выработку фермента, который способствует предотвращению заболевания на ранней стадии. К такому выводу ученые пришли после изучения образцов ткани мозга у людей, страдающих болезнью Альцгеймера.

Психологи считают, что поедание сладостей лишь увеличивает тягу к сладкому, что приводит к так называемой сахарной зависимости.

Заменители сахара

Сахар и Глюкоза Кристаллы ксилита

Вместо сахара можно использовать мёд или фрукты, которые содержат как фруктозу, так и глюкозу. В клетках печени фруктоза фосфорилируется, а затем расщепляется на триозы, которые либо используются для синтеза жирных кислот, что может приводить к ожирению, а также к повышению уровня жиров (что, в свою очередь, повышает риск атеросклероза), или используется для синтеза гликогена (частично также превращается в глюкозу в ходе глюконеогенеза).

Фрукты и ягоды особенно полезны благодаря содержанию в них витаминов, органических кислот и минеральных солей. Пчелиный мёд также содержит витамины, органические кислоты, соли, ферменты, белки и в той же мере оказывает благоприятное влияние на организм, но содержание сахарозы (до 2 %) и высокая калорийность также требуют ограничения потребления мёда до 50—60 граммов в день. Также мёд для некоторых людей является аллергеном.

Заменители сахара (ксилит, сорбит, аспартам), которые по сладости и внешнему виду мало отличаются от пищевого сахара, могут использоваться при лечении ожирения. Для обеспечения потребности человека в сладком достаточно в день 40 граммов ксилита. Тем не менее имеются данные, что непрерывное употребление ксилита в пожилом возрасте может ускорить течение атеросклеротического процесса.

Непищевое применение сахара

  • В донной противодесантной мине, устанавливаемой в прибрежной воде возле своего берега реки (водоёма) на глубине до двух метров, в качестве предохранителя используется пробка из прессованного сахара. Установив такую мину, открывают крышку, закрывавшую воде доступ к пробке. Максимум за два часа (время сильно зависит от температуры воды) сахарная пробка растворится, отчего мина встанет на боевой взвод. Такое устройство позволяет установить минное поле таких мин без опасности подорваться на уже установленных.

Дополнительные факты

  • Сахар-рафинад в форме кубиков был изобретён в 1843 году в Чехии. Изобретатель — швейцарец Яков Кристоф Рад был управляющим сахарного завода в Дачице. На месте, где находился сахарный завод, сейчас установлен памятник — белоснежный куб, символизирующий сахар-рафинад.
  • Сахар-рафинад (кубик с ребром в 1 см) полностью растворяется в стакане с водой +60 °C в течение 11—24 секунд без перемешивания воды (при проведении испытаний ГОСТ 12577-67).
  • Опыты на крысах показали, что употребление сахара вызывает зависимость, при этом «произведённые сахаром изменения в мозге очень похожи на те, что возникают под действием кокаина, морфия или никотина».
  • Поджечь кусочек сахара удастся, если насыпать на место поджига немного пепла, например, табачного, так как последний содержит соли калия, в частности поташ, катализирующие горение сахарозы.
  • При разрушении кристаллической решетки сахара высвобождается энергия в виде слабого синего свечения, это явление называется триболюминесценция.

Галерея

Глюкоза

Глюко́за, или виноградный сахар, или декстроза (D-глюкоза), C6H12O6 — органическое соединение, моносахарид (шестиатомный гидроксиальдегид, гексоза), один из самых распространённых источников энергии в живых организмах на планете. Встречается в соке многих фруктов и ягод, в том числе и винограда, от чего и произошло название этого вида сахара. Глюкозное звено входит в состав полисахаридов (целлюлоза, крахмал, гликоген) и ряда дисахаридов (мальтозы, лактозы и сахарозы), которые, например, в пищеварительном тракте быстро расщепляются на глюкозу и фруктозу.

История

Вероятно, глюкоза известна человеку с древних времён, поскольку она кристаллизуется из мёда. Однако в чистом виде её выделили гораздо позже: немецкий химик Андреас Маргграф получил её в 1747 году из виноградного сока. Жозеф Луи Пруст в 1801 году осадил кристаллы α-D-глюкозы из того же виноградного сока. Благодаря этим экспериментам за глюкозой закрепилось название виноградного сахара.

Использование глюкозы в качестве подсластителя связано с тем, что во время Наполеоновских войн были заблокированы поставки тростникового сахара из Вест-Индии. Ещё в 1000 году до н. э. в Китае из крахмала (ферментацией риса) получали искусственный подсластитель — дисахарид мальтозу. К концу XVIII в. в Европе было известно, что крахмал можно обработать кислотой и получить сладкое вещество. Именно это позволило К. С. Кирхгофу нагреванием картофельного крахмала с серной кислотой получить сладкое сиропообразное вещество. В результате оптимизации процесса он получил сироп, который кристаллизовался при стоянии. Кроме того, была предпринята попытка прессовать получаемую массу в твёрдый продукт и в таком виде продавать. Однако организовать производство не удалось, поскольку Наполеон потерпел поражение и поставки сахара были восстановлены.

Процесс получения глюкозы исследовал французский химик Соссюр. Он выяснил, что крахмал подвергается гидролизу, при котором разрушаются связи между углеводными фрагментами, причём на каждый разрыв расходуется по одной молекуле воды. Также было обнаружено, что конфеты, производимые из сиропов глюкозы, не такие сладкие, как те, что получают из сахарозы. Поэтому в Германии и других странах Европы было организовано производство глюкозы.

В то время промышленная глюкоза была недостаточно чистой и получалась в виде сиропов. Её приходилось многократно кристаллизовать из воды или использовать органические растворители. Единственной твёрдой формой, которую выпускали в большом количестве, была литая глюкоза: сироп заливали в формы, где он затвердевал.

В 1923 году в США Уильям Б. Ньюкирк (англ. William B. Newkirk) запатентовал промышленный способ получения глюкозы. Этот способ отличался тщательным контролем условий кристаллизации, благодаря чему глюкоза выпадала из раствора в виде чистых, крупных кристаллов.

Строение молекулы

Глюкоза принадлежит к классу альдогексоз, то есть является полигидроксиальдегидом, содержащим шесть атомов углерода, альдегидную группу и пять гидроксильных групп. Четыре атома углерода в её структуре являются хиральными, поэтому существует 16 стереоизомерных альдогексоз: некоторые встречаются в природе, некоторые получены синтетически. Конкретную конфигурацию хиральных центров глюкозы в конце XIX в. установил немецкий химик Эмиль Фишер. Он сделал это при помощи реакций наращивания и деградации углеродной цепи сахаров. Наряду с наиболее распространённым в природе моносахаридом D-глюкозой существует также её энантиомер L-глюкоза,который в природе практически не встречается.

Сахар и Глюкоза D-глюкоза (слева) и L-глюкоза (справа)

Часто D-глюкозу изображают в линейной форме, однако в действительности D-глюкоза существует в циклической форме, образованной в результате присоединения ОН-группы при углероде С-5 к альдегидной группе. Образующийся при этом циклический полуацеталь устойчив: в растворах и кристаллической форме D-глюкоза более чем на 99 % находится в форме полуацеталя. В общем такую форму называют пиранозной (от названия пирана — шестичленного гетероцикла с одним атомом кислорода), а циклическую D-глюкозу называют D-глюкопиранозой.

При описанной циклизации возникает новый стереоцентр при полуацетальном атоме углерода, поэтому D-глюкопираноза может существовать в виде двух диастереомеров, называемых аномерами: α-D-глюкопиранозы и β-D-глюкопиранозы (или кратко: α-D-глюкозы и β-D-глюкозы; α-аномера и β-аномера). Изображать циклические формы углеводов удобно при помощи проекций Хеуорса — идеализированных шестичленных циклов с заместителями над и под плоскостью цикла.

Наиболее близко к истине структуру молекулы глюкозы можно изобразить, используя конформацию «кресло». В таком представлении все гидроксильные группы D-глюкопиранозы находятся в экваториальных положениях (кроме аномерной, которая может находиться в экваториальном либо аксиальном положении в зависимости от аномера). Экваториальные положения более выгодны по сравнению с аксиальными: это объясняет, почему глюкоза является наиболее распространённым моносахаридом.

В растворах α-D-глюкопираноза и β-D-глюкопираноза существуют в равновесии и взаимопревращаются через образование открытоцепной формы. Равновесная доля α-аномера при 31 °C составляет 38 %, а более устойчивого β-аномера — 62 %. Чистые аномеры можно получить в кристаллическом виде: α-аномер кристаллизуется из воды в виде моногидрата, а β-аномер кристаллизуется из пиридина.

Равновесие между аномерами D-глюкозы

Физические свойства

Глюкоза — бесцветное кристаллическое вещество без запаха. Обладает сладким вкусом. D-глюкоза представлена в виде трёх кристаллических форм: безводной α-D-глюкопиранозы, моногидрата α-D-глюкопиранозы и безводной β-D-глюкопиранозы (хотя описан также моногидрат β-D-глюкопиранозы). Безводные формы имеют орторомбические кристаллы, а гидрат — моноклинные. Все три формы отличаются температурой плавления: α-аномер плавится при 146 °C, его моногидрат — при 83 °C, β-аномер — при 148–150 °C.

Аномеры D-глюкопиранозы оптически активны: удельное вращение α-аномера составляет +112,2°, β-аномера — +18,9°. Оба аномера при растворении претерпевают мутаротацию, то есть превращаются в равновесную смесь, состоящую из 62 % β-аномера и 38 % α-аномера. Удельное вращение этой смеси составляет +52,7°.

Получение

Производство глюкозных сиропов

Кислотный гидролиз крахмала

Сахар и Глюкоза Структура амилопектина — компонента крахмала

Единственным сырьём для производства глюкозы является крахмал, хотя делаются попытки использовать другой природный полимер глюкозы — целлюлозу. Основным источником крахмала является кукуруза: 100 % глюкозных подсластителей в США и 84 % в Японии производят из кукурузного крахмала. Также 70 % производимой в мире кукурузы идёт на производство глюкозы. В Европе постепенно возрастает использование пшеничного крахмала, хотя в основном используется также кукурузный крахмал. В Австралии глюкозу получают только из пшеничного крахмала. В Азии используют крахмал из саго, тапиоки и кукурузы.

Для получения глюкозы крахмал гидролизуют в присутствии кислот или ферментов. При этом происходит разрыв связей между глюкозными звеньями полимерных амилозы и амилопектина — компонентов крахмала — и образуется мономер (D-глюкоза) с некоторым содержанием димеров: мальтозы и изомальтозы. Для кислотного гидролиза готовят суспензию крахмала в воде (30-40 мас. %) и доводят pH до 2 или ниже. При атмосферном давлении кислотный гидролиз протекает 6 ч, однако современные установки позволяют проводить процесс при повышенном давлении и, соответственно, более высокой температуре. При давлении 415–620 кПа и температуре до 160 °C крахмал гидролизуется в течение нескольких минут. Останавливают реакцию добавлением нейтрализующего реагента (обычно карбоната натрия), и pH повышается до 4-5,5.

После гидролиза нерастворимые примеси, которые изначально присутствовали в крахмале, отделяют центрифугированием или фильтрованием, а растворимые примеси удаляют активированным углём и ионообменными смолами. Смолы также позволяют обесцветить полученную глюкозу. Конечный раствор упаривают. Большинство глюкозных сиропов продают в виде 70-85 % растворов, хотя их можно упарить и до твёрдого состояния.

Глюкозные сиропы отличаются по степени гидролиза крахмала: её оценивают по количеству присутствующих в конечном продукте восстанавливающих сахаров и выражают в декстрозных эквивалентах (DE). Интересно, что кислотный гидролиз является в целом случайным процессом, однако в данном случае при одинаковой степени конверсии получается очень воспроизводимый углеводный состав конечного продукта. В некоторых случаях этот факт является нежелательным ограничением, потому что производителю может понадобиться более гибко регулировать углеводный состав. Из-за этого в промышленности стали использовать ферментативный гидролиз крахмала.

Ферментативный гидролиз крахмала

Ферментативный гидролиз используют как дополнение к кислотному. Изначально таким способом пытались повысить степень конверсии и получить более сладкий и менее вязкий сироп с большим содержанием глюкозы. Однако ферментативный гидролиз позволяет также регулировать соотношение глюкозы и мальтозы в продукте. Для проведения ферментативного гидролиза pH повышают до 4-6, а температуру снижают до 60-70 °C, затем вносят необходимые ферменты, которые подбирают исходя из потребностей по составу. Бактериальные α-амилазы случайным образом расщепляют α-1,4-гликозидные связи в крахмале. β-Амилазы и грибковые α-амилазы расщепляют те же связи, но дают преимущественно мальтозу. Глюкоамилаза отщепляет по одной молекуле глюкозы с невосстанавливающего конца, но может расщеплять также α-1,6-связи. Пуллуланаза расщепляет α-1,6-связи. По окончании процесса ферменты дезактивируют нагреванием или изменением pH.

Открытие термоустойчивых α-амилаз позволило разработать полностью ферментативные процессы и ещё более точно контролировать степень конверсии и углеводный состав продукта. Ферменты вносят в суспензию крахмала при pH 6-6,5, после чего суспензию нагревают паром до 103-107 °C и выдерживают в течение 5-10 мин, а затем 1-2 ч при 95 °C. После этого проводят вторичный ферментативный гидролиз, как и в случае кислотного гидролиза.

Производство общего сахара

Большая часть глюкозы продаётся в виде сиропов, но существует небольшая потребность также в твёрдой глюкозе. Её производят как в чистом виде, так и в виде общего сахара (англ. total sugars) — отверждённого гидролизата крахмала. Общий сахар может содержать значительное количество мальтозы (DE<20), быть практически чистой глюкозой (95-99 %), а также содержать определённый процент фруктозы.

Производство кристаллической глюкозы

Изначально чистую кристаллическую глюкозу производили из крахмала, гидролизованного в кислой среде. В таких условиях удавалось добиться только 88 % содержания глюкозы, поскольку в условиях гидролиза образовывались побочные продукты, связанные с мутаротацией и изомеризацией. С 1938 года начали использовать ферментативный гидролиз, который позволил получать более чистую глюкозу.

Моногидрат α-D-глюкозы получают кристаллизацией из перенасыщенных сиропов с содержанием твёрдого вещества в 74-79 %, из которого глюкоза составляет 95-96 %. Такие сиропы производят ферментативным гидролизом, нацеленным на максимальную конверсию. Сироп охлаждают до 46-50 °C и смешивают с затравочными кристаллами из предыдущей партии. Сироп медленно охлаждают до 20-40 °C в течение 2-5 дней: при этом около 60 % кристаллизуется в виде моногидрата α-D-глюкозы. Маточный раствор отделяют на центрифугах, кристаллы глюкозы промывают водой и там же сушат до максимально сухого состояния (14 % влаги). Затем их досушивают потоком горячего воздуха до 8,5-9 % влаги (теоретическое содержание воды в моногидрате — 9,08 %). Кристаллизации не мешает наличие примесей, поэтому маточный раствор концентрируют и получают вторую порцию кристаллов либо объединяют его со следующей партией сиропа. Извлечение моногидрата глюкозы из сиропа достигает 87,5 %. При повторных кристаллизациях из маточного раствора степень выделения повышается до 100 %.

Безводную α-D-глюкозу кристаллизуют при 60-65 °C в условиях вакуума и испарения растворителя. Исходные сиропы должны быть достаточно чистые. Цикл кристаллизации значительно короче, чем для моногидрата, и составляет 6-8 ч. Выделяют и сушат кристаллы примерно так же, как описано выше. Содержание воды в конечном продукте не превышает 0,1 %.

Безводную β-D-глюкозу получают кристаллизацией выше 100 °C. Дополнительные сложности связаны с тем, что β-D-глюкоза значительно лучше растворима в воде, чем α-D-глюкоза (72 % против 30 % при 25 °C).

Химические свойства

Глюкоза может восстанавливаться в шестиатомный спирт (сорбит). Окисление глюкозы в зависимости от метода окисления может приводить к трём продуктам: глюконовой кислоте (окисление альдегидной группы), глюкаровой кислоте (дополнительно окисляется первичная OH-группа) либо глюкуроновой кислоте (окисление только первичной OH-группы).

Как восстанавливающий сахар, глюкоза проявляет восстановительные свойства. Это проявляется в реакциях с реактивом Толленса (аммиачным раствором оксида серебра), реактивом Бенедикта и реактивом Фелинга (реагенты на основе меди).

Биологическая роль

Глюкоза — основной продукт фотосинтеза, образуется в цикле Кальвина.

В организме человека и животных глюкоза является основным и наиболее универсальным источником энергии для обеспечения метаболических процессов. Глюкоза является субстратом гликолиза, в ходе которого она может окислиться либо до пирувата в аэробных условиях, либо до лактата в случае анаэробных условий. Пируват, полученный таким образом в гликолизе, далее декарбоксилируется, превращаясь в ацетил-КоА (ацетилкоэнзим А). Также в ходе окислительного декарбоксилирования пирувата восстанавливается кофермент НАД+. Ацетил-КоА далее используется в цикле Кребса, а восстановленный кофермент используется в дыхательной цепи.

Глюкоза депонируется у животных в виде гликогена, у растений — в виде крахмала, полимер глюкозы — целлюлоза является основной составляющей клеточных оболочек всех высших растений. У животных глюкоза помогает пережить заморозки. Так, у некоторых видов лягушек перед зимой повышается уровень глюкозы в крови, за счёт чего их тела способны выдержать заморозку во льду.

Применение

В медицине

Глюкозу используют при интоксикации (например, при пищевом отравлении и инфекциях), вводят внутривенно струйно и капельно, так как она является универсальным антитоксическим средством.

Глюкозу используют для целей регидратации организма, как источник углеводов, в том числе при парентеральном питании.

Также препараты на основе глюкозы и сама глюкоза используются эндокринологами при определении наличия и типа сахарного диабета у человека (в виде стресс-теста на ввод повышенного количества глюкозы в организм).

Для медицинских целей глюкоза, обычно используется в виде раствора для инъекций или инфузий, а также в виде таблеток.

В пищевой промышленности

В пищевой промышленности глюкоза применяется при выпечке хлеба, а также при производстве сгущённого молока и мороженого.

В сельском хозяйстве

В сельском хозяйстве глюкоза, зачастую, применяется для подкормки пчёл.

В химической промышленности

Глюкоза

Глюко́за, или виноградный сахар, или декстроза (D-глюкоза), C6H12O6 — органическое соединение, моносахарид (шестиатомный гидроксиальдегид, гексоза), один из самых распространённых источников энергии в живых организмах на планете. Встречается в соке многих фруктов и ягод, в том числе и винограда, от чего и произошло название этого вида сахара. Глюкозное звено входит в состав полисахаридов (целлюлоза, крахмал, гликоген) и ряда дисахаридов (мальтозы, лактозы и сахарозы), которые, например, в пищеварительном тракте быстро расщепляются на глюкозу и фруктозу.

История

Вероятно, глюкоза известна человеку с древних времён, поскольку она кристаллизуется из мёда. Однако в чистом виде её выделили гораздо позже: немецкий химик Андреас Маргграф получил её в 1747 году из виноградного сока. Жозеф Луи Пруст в 1801 году осадил кристаллы α-D-глюкозы из того же виноградного сока. Благодаря этим экспериментам за глюкозой закрепилось название виноградного сахара.

Использование глюкозы в качестве подсластителя связано с тем, что во время Наполеоновских войн были заблокированы поставки тростникового сахара из Вест-Индии. Ещё в 1000 году до н. э. в Китае из крахмала (ферментацией риса) получали искусственный подсластитель — дисахарид мальтозу. К концу XVIII в. в Европе было известно, что крахмал можно обработать кислотой и получить сладкое вещество. Именно это позволило К. С. Кирхгофу нагреванием картофельного крахмала с серной кислотой получить сладкое сиропообразное вещество. В результате оптимизации процесса он получил сироп, который кристаллизовался при стоянии. Кроме того, была предпринята попытка прессовать получаемую массу в твёрдый продукт и в таком виде продавать. Однако организовать производство не удалось, поскольку Наполеон потерпел поражение и поставки сахара были восстановлены.

Процесс получения глюкозы исследовал французский химик Соссюр. Он выяснил, что крахмал подвергается гидролизу, при котором разрушаются связи между углеводными фрагментами, причём на каждый разрыв расходуется по одной молекуле воды. Также было обнаружено, что конфеты, производимые из сиропов глюкозы, не такие сладкие, как те, что получают из сахарозы. Поэтому в Германии и других странах Европы было организовано производство глюкозы.

В то время промышленная глюкоза была недостаточно чистой и получалась в виде сиропов. Её приходилось многократно кристаллизовать из воды или использовать органические растворители. Единственной твёрдой формой, которую выпускали в большом количестве, была литая глюкоза: сироп заливали в формы, где он затвердевал.

В 1923 году в США Уильям Б. Ньюкирк (англ. William B. Newkirk) запатентовал промышленный способ получения глюкозы. Этот способ отличался тщательным контролем условий кристаллизации, благодаря чему глюкоза выпадала из раствора в виде чистых, крупных кристаллов.

Строение молекулы

Глюкоза принадлежит к классу альдогексоз, то есть является полигидроксиальдегидом, содержащим шесть атомов углерода, альдегидную группу и пять гидроксильных групп. Четыре атома углерода в её структуре являются хиральными, поэтому существует 16 стереоизомерных альдогексоз: некоторые встречаются в природе, некоторые получены синтетически. Конкретную конфигурацию хиральных центров глюкозы в конце XIX в. установил немецкий химик Эмиль Фишер. Он сделал это при помощи реакций наращивания и деградации углеродной цепи сахаров. Наряду с наиболее распространённым в природе моносахаридом D-глюкозой существует также её энантиомер L-глюкоза,который в природе практически не встречается.

Сахар и Глюкоза D-глюкоза (слева) и L-глюкоза (справа)

Часто D-глюкозу изображают в линейной форме, однако в действительности D-глюкоза существует в циклической форме, образованной в результате присоединения ОН-группы при углероде С-5 к альдегидной группе. Образующийся при этом циклический полуацеталь устойчив: в растворах и кристаллической форме D-глюкоза более чем на 99 % находится в форме полуацеталя. В общем такую форму называют пиранозной (от названия пирана — шестичленного гетероцикла с одним атомом кислорода), а циклическую D-глюкозу называют D-глюкопиранозой.

При описанной циклизации возникает новый стереоцентр при полуацетальном атоме углерода, поэтому D-глюкопираноза может существовать в виде двух диастереомеров, называемых аномерами: α-D-глюкопиранозы и β-D-глюкопиранозы (или кратко: α-D-глюкозы и β-D-глюкозы; α-аномера и β-аномера). Изображать циклические формы углеводов удобно при помощи проекций Хеуорса — идеализированных шестичленных циклов с заместителями над и под плоскостью цикла.

Наиболее близко к истине структуру молекулы глюкозы можно изобразить, используя конформацию «кресло». В таком представлении все гидроксильные группы D-глюкопиранозы находятся в экваториальных положениях (кроме аномерной, которая может находиться в экваториальном либо аксиальном положении в зависимости от аномера). Экваториальные положения более выгодны по сравнению с аксиальными: это объясняет, почему глюкоза является наиболее распространённым моносахаридом.

В растворах α-D-глюкопираноза и β-D-глюкопираноза существуют в равновесии и взаимопревращаются через образование открытоцепной формы. Равновесная доля α-аномера при 31 °C составляет 38 %, а более устойчивого β-аномера — 62 %. Чистые аномеры можно получить в кристаллическом виде: α-аномер кристаллизуется из воды в виде моногидрата, а β-аномер кристаллизуется из пиридина.

Равновесие между аномерами D-глюкозы

Физические свойства

Глюкоза — бесцветное кристаллическое вещество без запаха. Обладает сладким вкусом. D-глюкоза представлена в виде трёх кристаллических форм: безводной α-D-глюкопиранозы, моногидрата α-D-глюкопиранозы и безводной β-D-глюкопиранозы (хотя описан также моногидрат β-D-глюкопиранозы). Безводные формы имеют орторомбические кристаллы, а гидрат — моноклинные. Все три формы отличаются температурой плавления: α-аномер плавится при 146 °C, его моногидрат — при 83 °C, β-аномер — при 148–150 °C.

Аномеры D-глюкопиранозы оптически активны: удельное вращение α-аномера составляет +112,2°, β-аномера — +18,9°. Оба аномера при растворении претерпевают мутаротацию, то есть превращаются в равновесную смесь, состоящую из 62 % β-аномера и 38 % α-аномера. Удельное вращение этой смеси составляет +52,7°.

Получение

Производство глюкозных сиропов

Кислотный гидролиз крахмала

Сахар и Глюкоза Структура амилопектина — компонента крахмала

Единственным сырьём для производства глюкозы является крахмал, хотя делаются попытки использовать другой природный полимер глюкозы — целлюлозу. Основным источником крахмала является кукуруза: 100 % глюкозных подсластителей в США и 84 % в Японии производят из кукурузного крахмала. Также 70 % производимой в мире кукурузы идёт на производство глюкозы. В Европе постепенно возрастает использование пшеничного крахмала, хотя в основном используется также кукурузный крахмал. В Австралии глюкозу получают только из пшеничного крахмала. В Азии используют крахмал из саго, тапиоки и кукурузы.

Для получения глюкозы крахмал гидролизуют в присутствии кислот или ферментов. При этом происходит разрыв связей между глюкозными звеньями полимерных амилозы и амилопектина — компонентов крахмала — и образуется мономер (D-глюкоза) с некоторым содержанием димеров: мальтозы и изомальтозы. Для кислотного гидролиза готовят суспензию крахмала в воде (30-40 мас. %) и доводят pH до 2 или ниже. При атмосферном давлении кислотный гидролиз протекает 6 ч, однако современные установки позволяют проводить процесс при повышенном давлении и, соответственно, более высокой температуре. При давлении 415–620 кПа и температуре до 160 °C крахмал гидролизуется в течение нескольких минут. Останавливают реакцию добавлением нейтрализующего реагента (обычно карбоната натрия), и pH повышается до 4-5,5.

После гидролиза нерастворимые примеси, которые изначально присутствовали в крахмале, отделяют центрифугированием или фильтрованием, а растворимые примеси удаляют активированным углём и ионообменными смолами. Смолы также позволяют обесцветить полученную глюкозу. Конечный раствор упаривают. Большинство глюкозных сиропов продают в виде 70-85 % растворов, хотя их можно упарить и до твёрдого состояния.

Глюкозные сиропы отличаются по степени гидролиза крахмала: её оценивают по количеству присутствующих в конечном продукте восстанавливающих сахаров и выражают в декстрозных эквивалентах (DE). Интересно, что кислотный гидролиз является в целом случайным процессом, однако в данном случае при одинаковой степени конверсии получается очень воспроизводимый углеводный состав конечного продукта. В некоторых случаях этот факт является нежелательным ограничением, потому что производителю может понадобиться более гибко регулировать углеводный состав. Из-за этого в промышленности стали использовать ферментативный гидролиз крахмала.

Ферментативный гидролиз крахмала

Ферментативный гидролиз используют как дополнение к кислотному. Изначально таким способом пытались повысить степень конверсии и получить более сладкий и менее вязкий сироп с большим содержанием глюкозы. Однако ферментативный гидролиз позволяет также регулировать соотношение глюкозы и мальтозы в продукте. Для проведения ферментативного гидролиза pH повышают до 4-6, а температуру снижают до 60-70 °C, затем вносят необходимые ферменты, которые подбирают исходя из потребностей по составу. Бактериальные α-амилазы случайным образом расщепляют α-1,4-гликозидные связи в крахмале. β-Амилазы и грибковые α-амилазы расщепляют те же связи, но дают преимущественно мальтозу. Глюкоамилаза отщепляет по одной молекуле глюкозы с невосстанавливающего конца, но может расщеплять также α-1,6-связи. Пуллуланаза расщепляет α-1,6-связи. По окончании процесса ферменты дезактивируют нагреванием или изменением pH.

Открытие термоустойчивых α-амилаз позволило разработать полностью ферментативные процессы и ещё более точно контролировать степень конверсии и углеводный состав продукта. Ферменты вносят в суспензию крахмала при pH 6-6,5, после чего суспензию нагревают паром до 103-107 °C и выдерживают в течение 5-10 мин, а затем 1-2 ч при 95 °C. После этого проводят вторичный ферментативный гидролиз, как и в случае кислотного гидролиза.

Производство общего сахара

Большая часть глюкозы продаётся в виде сиропов, но существует небольшая потребность также в твёрдой глюкозе. Её производят как в чистом виде, так и в виде общего сахара (англ. total sugars) — отверждённого гидролизата крахмала. Общий сахар может содержать значительное количество мальтозы (DE<20), быть практически чистой глюкозой (95-99 %), а также содержать определённый процент фруктозы.

Производство кристаллической глюкозы

Изначально чистую кристаллическую глюкозу производили из крахмала, гидролизованного в кислой среде. В таких условиях удавалось добиться только 88 % содержания глюкозы, поскольку в условиях гидролиза образовывались побочные продукты, связанные с мутаротацией и изомеризацией. С 1938 года начали использовать ферментативный гидролиз, который позволил получать более чистую глюкозу.

Моногидрат α-D-глюкозы получают кристаллизацией из перенасыщенных сиропов с содержанием твёрдого вещества в 74-79 %, из которого глюкоза составляет 95-96 %. Такие сиропы производят ферментативным гидролизом, нацеленным на максимальную конверсию. Сироп охлаждают до 46-50 °C и смешивают с затравочными кристаллами из предыдущей партии. Сироп медленно охлаждают до 20-40 °C в течение 2-5 дней: при этом около 60 % кристаллизуется в виде моногидрата α-D-глюкозы. Маточный раствор отделяют на центрифугах, кристаллы глюкозы промывают водой и там же сушат до максимально сухого состояния (14 % влаги). Затем их досушивают потоком горячего воздуха до 8,5-9 % влаги (теоретическое содержание воды в моногидрате — 9,08 %). Кристаллизации не мешает наличие примесей, поэтому маточный раствор концентрируют и получают вторую порцию кристаллов либо объединяют его со следующей партией сиропа. Извлечение моногидрата глюкозы из сиропа достигает 87,5 %. При повторных кристаллизациях из маточного раствора степень выделения повышается до 100 %.

Безводную α-D-глюкозу кристаллизуют при 60-65 °C в условиях вакуума и испарения растворителя. Исходные сиропы должны быть достаточно чистые. Цикл кристаллизации значительно короче, чем для моногидрата, и составляет 6-8 ч. Выделяют и сушат кристаллы примерно так же, как описано выше. Содержание воды в конечном продукте не превышает 0,1 %.

Безводную β-D-глюкозу получают кристаллизацией выше 100 °C. Дополнительные сложности связаны с тем, что β-D-глюкоза значительно лучше растворима в воде, чем α-D-глюкоза (72 % против 30 % при 25 °C).

Химические свойства

Глюкоза может восстанавливаться в шестиатомный спирт (сорбит). Окисление глюкозы в зависимости от метода окисления может приводить к трём продуктам: глюконовой кислоте (окисление альдегидной группы), глюкаровой кислоте (дополнительно окисляется первичная OH-группа) либо глюкуроновой кислоте (окисление только первичной OH-группы).

Как восстанавливающий сахар, глюкоза проявляет восстановительные свойства. Это проявляется в реакциях с реактивом Толленса (аммиачным раствором оксида серебра), реактивом Бенедикта и реактивом Фелинга (реагенты на основе меди).

Биологическая роль

Глюкоза — основной продукт фотосинтеза, образуется в цикле Кальвина.

В организме человека и животных глюкоза является основным и наиболее универсальным источником энергии для обеспечения метаболических процессов. Глюкоза является субстратом гликолиза, в ходе которого она может окислиться либо до пирувата в аэробных условиях, либо до лактата в случае анаэробных условий. Пируват, полученный таким образом в гликолизе, далее декарбоксилируется, превращаясь в ацетил-КоА (ацетилкоэнзим А). Также в ходе окислительного декарбоксилирования пирувата восстанавливается кофермент НАД+. Ацетил-КоА далее используется в цикле Кребса, а восстановленный кофермент используется в дыхательной цепи.

Глюкоза депонируется у животных в виде гликогена, у растений — в виде крахмала, полимер глюкозы — целлюлоза является основной составляющей клеточных оболочек всех высших растений. У животных глюкоза помогает пережить заморозки. Так, у некоторых видов лягушек перед зимой повышается уровень глюкозы в крови, за счёт чего их тела способны выдержать заморозку во льду.

Применение

В медицине

Глюкозу используют при интоксикации (например, при пищевом отравлении и инфекциях), вводят внутривенно струйно и капельно, так как она является универсальным антитоксическим средством.

Глюкозу используют для целей регидратации организма, как источник углеводов, в том числе при парентеральном питании.

Также препараты на основе глюкозы и сама глюкоза используются эндокринологами при определении наличия и типа сахарного диабета у человека (в виде стресс-теста на ввод повышенного количества глюкозы в организм).

Для медицинских целей глюкоза, обычно используется в виде раствора для инъекций или инфузий, а также в виде таблеток.

В пищевой промышленности

В пищевой промышленности глюкоза применяется при выпечке хлеба, а также при производстве сгущённого молока и мороженого.

В сельском хозяйстве

В сельском хозяйстве глюкоза, зачастую, применяется для подкормки пчёл.

В химической промышленности

Сахар и Глюкоза
Сахар и Глюкоза

Сахар и Глюкоза

Оцените статью
( Пока оценок нет )
Хочу
Сахар и Глюкоза
Хочу проваляться весь день
Хочу проваляться весь день!